
Fair Scheduler Guide

Table of contents

1 Purpose...2

2 Introduction..2

3 Installation..3

4 Configuring the Fair scheduler.. 3

5 Administration... 6

6 Implementation.. 6

Copyright © 2008 The Apache Software Foundation. All rights reserved.

1. Purpose

This document describes the Fair Scheduler, a pluggable Map/Reduce scheduler for Hadoop
which provides a way to share large clusters.

2. Introduction

Fair scheduling is a method of assigning resources to jobs such that all jobs get, on average,
an equal share of resources over time. When there is a single job running, that job uses the
entire cluster. When other jobs are submitted, tasks slots that free up are assigned to the new
jobs, so that each job gets roughly the same amount of CPU time. Unlike the default Hadoop
scheduler, which forms a queue of jobs, this lets short jobs finish in reasonable time while
not starving long jobs. It is also a reasonable way to share a cluster between a number of
users. Finally, fair sharing can also work with job priorities - the priorities are used as
weights to determine the fraction of total compute time that each job should get.

The scheduler actually organizes jobs further into "pools", and shares resources fairly
between these pools. By default, there is a separate pool for each user, so that each user gets
the same share of the cluster no matter how many jobs they submit. However, it is also
possible to set a job's pool based on the user's Unix group or any other jobconf property, such
as the queue name property used by Capacity Scheduler. Within each pool, fair sharing is
used to share capacity between the running jobs. Pools can also be given weights to share the
cluster non-proportionally in the config file.

In addition to providing fair sharing, the Fair Scheduler allows assigning guaranteed
minimum shares to pools, which is useful for ensuring that certain users, groups or
production applications always get sufficient resources. When a pool contains jobs, it gets at
least its minimum share, but when the pool does not need its full guaranteed share, the excess
is split between other running jobs. This lets the scheduler guarantee capacity for pools while
utilizing resources efficiently when these pools don't contain jobs.

The Fair Scheduler lets all jobs run by default, but it is also possible to limit the number of
running jobs per user and per pool through the config file. This can be useful when a user
must submit hundreds of jobs at once, or in general to improve performance if running too
many jobs at once would cause too much intermediate data to be created or too much
context-switching. Limiting the jobs does not cause any subsequently submitted jobs to fail,
only to wait in the sheduler's queue until some of the user's earlier jobs finish. Jobs to run
from each user/pool are chosen in order of priority and then submit time, as in the default
FIFO scheduler in Hadoop.

Finally, the fair scheduler provides several extension points where the basic functionality can

Fair Scheduler Guide

Page 2
Copyright © 2008 The Apache Software Foundation. All rights reserved.

capacity_scheduler.html

be extended. For example, the weight calculation can be modified to give a priority boost to
new jobs, implementing a "shortest job first" policy which reduces response times for
interactive jobs even further.

3. Installation

To run the fair scheduler in your Hadoop installation, you need to put it on the
CLASSPATH. The easiest way is to copy the hadoop-*-fairscheduler.jar from
HADOOP_HOME/contrib/fairscheduler to HADOOP_HOME/lib. Alternatively you can
modify HADOOP_CLASSPATH to include this jar, in HADOOP_CONF_DIR/hadoop-env.sh

In order to compile fair scheduler, from sources execute ant package in source folder and
copy the build/contrib/fair-scheduler/hadoop-*-fairscheduler.jar to HADOOP_HOME/lib

You will also need to set the following property in the Hadoop config file
HADOOP_CONF_DIR/mapred-site.xml to have Hadoop use the fair scheduler:
<property>

<name>mapred.jobtracker.taskScheduler</name>
<value>org.apache.hadoop.mapred.FairScheduler</value>

</property>

Once you restart the cluster, you can check that the fair scheduler is running by going to
http://<jobtracker URL>/scheduler on the JobTracker's web UI. A "job scheduler
administration" page should be visible there. This page is described in the Administration
section.

4. Configuring the Fair scheduler

The following properties can be set in mapred-site.xml to configure the fair scheduler:

Name Description

mapred.fairscheduler.allocation.file Specifies an absolute path to an XML file which
contains the allocations for each pool, as well as
the per-pool and per-user limits on number of
running jobs. If this property is not provided,
allocations are not used.
This file must be in XML format, and can contain
three types of elements:
• pool elements, which may contain elements for

minMaps, minReduces, maxRunningJobs (limit
the number of jobs from the pool to run at
once),and weight (to share the cluster
non-proportionally with other pools).

Fair Scheduler Guide

Page 3
Copyright © 2008 The Apache Software Foundation. All rights reserved.

• user elements, which may contain a
maxRunningJobs to limit jobs. Note that by
default, there is a separate pool for each user, so
these may not be necessary; they are useful,
however, if you create a pool per user group or
manually assign jobs to pools.

• A userMaxJobsDefault element, which sets the
default running job limit for any users whose
limit is not specified.

Example Allocation file is listed below :
<?xml version="1.0"?>
<allocations>
<pool name="sample_pool">
<minMaps>5</minMaps>
<minReduces>5</minReduces>
<weight>2.0</weight>

</pool>
<user name="sample_user">
<maxRunningJobs>6</maxRunningJobs>

</user>
<userMaxJobsDefault>3</userMaxJobsDefault>

</allocations>
This example creates a pool sample_pool with a
guarantee of 5 map slots and 5 reduce slots.
The pool also has a weight of 2.0, meaning it
has a 2x higher share of the cluster than other
pools (the default weight is 1). Finally, the
example limits the number of running jobs per
user to 3, except for sample_user, who can run
6 jobs concurrently. Any pool not defined in the
allocations file will have no guaranteed capacity
and a weight of 1.0. Also, any pool or user with
no max running jobs set in the file will be
allowed to run an unlimited number of jobs.

mapred.fairscheduler.assignmultiple Allows the scheduler to assign both a map task
and a reduce task on each heartbeat, which
improves cluster throughput when there are
many small tasks to run. Boolean value, default:
false.

mapred.fairscheduler.sizebasedweight Take into account job sizes in calculating their
weights for fair sharing.By default, weights are
only based on job priorities. Setting this flag to
true will make them based on the size of the job
(number of tasks needed) as well,though not
linearly (the weight will be proportional to the log
of the number of tasks needed). This lets larger

Fair Scheduler Guide

Page 4
Copyright © 2008 The Apache Software Foundation. All rights reserved.

jobs get larger fair shares while still providing
enough of a share to small jobs to let them finish
fast. Boolean value, default: false.

mapred.fairscheduler.poolnameproperty Specify which jobconf property is used to
determine the pool that a job belongs in. String,
default: user.name (i.e. one pool for each user).
Some other useful values to set this to are:
• group.name (to create a pool per Unix group).
• mapred.job.queue.name (the same property as

the queue name in Capacity Scheduler).

mapred.fairscheduler.weightadjuster An extensibility point that lets you specify a class
to adjust the weights of running jobs. This class
should implement the WeightAdjuster interface.
There is currently one example implementation -
NewJobWeightBooster, which increases the
weight of jobs for the first 5 minutes of their
lifetime to let short jobs finish faster. To use it,
set the weightadjuster property to the full class
name,
org.apache.hadoop.mapred.NewJobWeightBooster
NewJobWeightBooster itself provides two
parameters for setting the duration and boost
factor.
1. mapred.newjobweightbooster.factor Factor by

which new jobs weight should be boosted.
Default is 3

2. mapred.newjobweightbooster.duration Duration
in milliseconds, default 300000 for 5 minutes

mapred.fairscheduler.loadmanager An extensibility point that lets you specify a class
that determines how many maps and reduces
can run on a given TaskTracker. This class
should implement the LoadManager interface.
By default the task caps in the Hadoop config
file are used, but this option could be used to
make the load based on available memory and
CPU utilization for example.

mapred.fairscheduler.taskselector: An extensibility point that lets you specify a class
that determines which task from within a job to
launch on a given tracker. This can be used to
change either the locality policy (e.g. keep some
jobs within a particular rack) or the speculative
execution algorithm (select when to launch
speculative tasks). The default implementation
uses Hadoop's default algorithms from

Fair Scheduler Guide

Page 5
Copyright © 2008 The Apache Software Foundation. All rights reserved.

capacity_scheduler.html

JobInProgress.

5. Administration

The fair scheduler provides support for administration at runtime through two mechanisms:

1. It is possible to modify pools' allocations and user and pool running job limits at runtime
by editing the allocation config file. The scheduler will reload this file 10-15 seconds
after it sees that it was modified.

2. Current jobs, pools, and fair shares can be examined through the JobTracker's web
interface, at http://<jobtracker URL>/scheduler. On this interface, it is also possible to
modify jobs' priorities or move jobs from one pool to another and see the effects on the
fair shares (this requires JavaScript).

The following fields can be seen for each job on the web interface:

• Submitted - Date and time job was submitted.
• JobID, User, Name - Job identifiers as on the standard web UI.
• Pool - Current pool of job. Select another value to move job to another pool.
• Priority - Current priority. Select another value to change the job's priority
• Maps/Reduces Finished: Number of tasks finished / total tasks.
• Maps/Reduces Running: Tasks currently running.
• Map/Reduce Fair Share: The average number of task slots that this job should have at

any given time according to fair sharing. The actual number of tasks will go up and down
depending on how much compute time the job has had, but on average it will get its fair
share amount.

In addition, it is possible to turn on an "advanced" view for the web UI, by going to
http://<jobtracker URL>/scheduler?advanced. This view shows four more columns used for
calculations internally:

• Maps/Reduce Weight: Weight of the job in the fair sharing calculations. This depends on
priority and potentially also on job size and job age if the sizebasedweight and
NewJobWeightBooster are enabled.

• Map/Reduce Deficit: The job's scheduling deficit in machine- seconds - the amount of
resources it should have gotten according to its fair share, minus how many it actually
got. Positive deficit means the job will be scheduled again in the near future because it
needs to catch up to its fair share. The scheduler schedules jobs with higher deficit ahead
of others. Please see the Implementation section of this document for details.

6. Implementation

There are two aspects to implementing fair scheduling: Calculating each job's fair share, and

Fair Scheduler Guide

Page 6
Copyright © 2008 The Apache Software Foundation. All rights reserved.

choosing which job to run when a task slot becomes available.

To select jobs to run, the scheduler then keeps track of a "deficit" for each job - the difference
between the amount of compute time it should have gotten on an ideal scheduler, and the
amount of compute time it actually got. This is a measure of how "unfair" we've been to the
job. Every few hundred milliseconds, the scheduler updates the deficit of each job by looking
at how many tasks each job had running during this interval vs. its fair share. Whenever a
task slot becomes available, it is assigned to the job with the highest deficit. There is one
exception - if there were one or more jobs who were not meeting their pool capacity
guarantees, we only choose among these "needy" jobs (based again on their deficit), to
ensure that the scheduler meets pool guarantees as soon as possible.

The fair shares are calculated by dividing the capacity of the cluster among runnable jobs
according to a "weight" for each job. By default the weight is based on priority, with each
level of priority having 2x higher weight than the next (for example, VERY_HIGH has 4x
the weight of NORMAL). However, weights can also be based on job sizes and ages, as
described in the Configuring section. For jobs that are in a pool, fair shares also take into
account the minimum guarantee for that pool. This capacity is divided among the jobs in that
pool according again to their weights.

Finally, when limits on a user's running jobs or a pool's running jobs are in place, we choose
which jobs get to run by sorting all jobs in order of priority and then submit time, as in the
standard Hadoop scheduler. Any jobs that fall after the user/pool's limit in this ordering are
queued up and wait idle until they can be run. During this time, they are ignored from the fair
sharing calculations and do not gain or lose deficit (their fair share is set to zero).

Fair Scheduler Guide

Page 7
Copyright © 2008 The Apache Software Foundation. All rights reserved.

	1 Purpose
	2 Introduction
	3 Installation
	4 Configuring the Fair scheduler
	5 Administration
	6 Implementation

